Latent Hough Transform for Object Detection
نویسندگان
چکیده
Hough transform based methods for object detection work by allowing image features to vote for the location of the object. While this representation allows for parts observed in different training instances to support a single object hypothesis, it also produces false positives by accumulating votes that are consistent in location but inconsistent in other properties like pose, color, shape or type. In this work, we propose to augment the Hough transform with latent variables in order to enforce consistency among votes. To this end, only votes that agree on the assignment of the latent variable are allowed to support a single hypothesis. For training a Latent Hough Transform (LHT) model, we propose a learning scheme that exploits the linearity of the Hough transform based methods. Our experiments on two datasets including the challenging PASCAL VOC 2007 benchmark show that our method outperforms traditional Hough transform based methods leading to state-of-the-art performance on some categories.
منابع مشابه
Latent-Class Hough Forests for 3D Object Detection and Pose Estimation
In this paper we propose a novel framework, Latent-Class Hough Forests, for 3D object detection and pose estimation in heavily cluttered and occluded scenes. Firstly, we adapt the state-of-the-art template matching feature, LINEMOD [14], into a scale-invariant patch descriptor and integrate it into a regression forest using a novel template-based split function. In training, rather than explici...
متن کاملLatent-Class Hough Forests for 6 DoF Object Pose Estimation
In this paper we present Latent-Class Hough Forests, a method for object detection and 6 DoF pose estimation in heavily cluttered and occluded scenarios. We adapt a state of the art template matching feature into a scale-invariant patch descriptor and integrate it into a regression forest using a novel template-based split function. We train with positive samples only and we treat class distrib...
متن کاملDevelopment Hough transform to detect straight lines using pre-processing filter
Image recognition is one of the most important field in image processing that in recent decades had much attention .Due to expansion of related fields with image processing and various application of this science in machine vision, military science, geography, aerospace and artificial intelligence and lots of other aspects, out stand the importance of this subject.One of the most important aspe...
متن کاملDetection of Microaneurysms in Retinal Angiography Images Using the Circular Hough Transform
This paper presents an automated method for detecting microaneurysms in the retinal angiographic images by using image processing techniques. In the presented method, in order to fade or remove the pseudo images, first retinal images are pre-processed. Then microaneurysms are identified by circular Hough transform. In the existing methods of dete...
متن کاملRandomized generalized Hough transform for 2-D gray scale object detection
This paper proposes a new algorithm for 2-D object detection called Randomized Generalized Hough Transform (RGHT). It combines the Generalized Hough Transform (GHT) with the Randomized Hough Transform (RHT). Our algorithm can detect arbitrary objects of various scales and orientations in graylevel images. We also demonstrate RGHT’s advantage of high speed, low storage requirement, high accuracy...
متن کامل